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Review: Block Encoding

® We mentioned the general form of channel coding over BSC.

® In particular, we looked at the general form of block
codes.

—)[ Block Encoder ]—>

- A S - A A

k bits k bits n bits n bits

Code length
— “Dimension” of the code

(n,k) codes: n-bit blocks are used to conveys k-info-bit blocks

Assume n > k N——> codewords \—>“messages”
K — Max. achievable rate
Rate: R = —,
Recall that the capacity of BSCis C = 1 — H(p).

For p € (0,1), we also have C € (0,1).

: o
KAchlevable rate is < 1. P




C

e C = the collection of all codewords for the code considered

* Each n-bit block is selected from C.
® The message (data block) has k bits,

so there are 2% possibilities.

® A reasonable code would not assign the same codeword to

different messages.
 Therefore, there are 2* (distinct) codewords in C.

* Ex. Repetition code with n = 3
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GF(2)

The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication
of bits:

@10 1 « 0 1
010 1 00 O
1|1 0 110 1

These are modulo-2 addition and modulo-2 multiplication,
respectively.

The operations are the same as the exclusive-or (XOR)
operation and the AND operation.
We will simply call them addition and multiplication so that we can
use a matrix formalism to define the code.

The two-element set {0, 1} together with this definition of
addition and multiplication is a number system called a finite

field or a Galois field, and is denoted by the label GF(2).
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Modulo operation

divisor),
e a modulo n (abbreviated as @ mod n ) is the remainder of the
division of a by n. quotient 13
e “83 mod 6°=75 divisor )83 dividend
e “‘Smod2”=1 6
In MATLAB, mod(5,2) = 1. 2_3
* Congruence relation quotient 2 18
5=1 (mod 2) divisor 2 )5 dividend _5 .
4
] remainder /

The modulo Operation finds the remainder after division of

one number by another (sometimes called modulus).

Given two positive numbers, @ (the dividend) and 1 (the




GF(2) and modulo operation

® Normal addition and multiplication (for O and 1):

0

0
1

1
1
2

0 1

0 0
0 1

* Addition and multiplication in GF(2):

D

0

0
1

0
1

1
1
0

0

1
0 0
0 1




GF(2)

® The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication of

bits: &0 1 101
010 1 0(0 1
111 0 1{1 O
° Notethat y@(=x
X®1l=X
X®Xx=0

The above property implies —X = X

* Extension: For vector and matrix, apply the operations to the elements
the same way that addition and multiplication would normally apply

@ (except that the calculations are all in GF(2)).

/




Examples

¢ Normal matrix multiplication:

(7% (=2))+ (4 x3)+(3x (=7)) = -14 + 12 + (-21)

7 4 31[-2 4 —23 14
2 5 6|3 -8|=|-31 4
1 8 91l-7 6 —41 -6

® Matrix multiplication in GF(2):

(1-1D)®0-0)@(1-1) = 19081

1 0 1711 1 0 1
0 0 1|0 1y=11 0
1 1 1111 O 0 O

Alternatively, one can also apply normal
matrix multiplication first, then apply

(1

mod 2” to each element:

bl o=l o= l

— ——— — — — — — — — — — — — — — — — —— — —— — —

,———————————\




BSC and the Error Pattern

x{) >_>y

® Again, to transmit k information bits, the channel is used n

times.

b { Encoder } > X <> BSC %X

=
1x k Ixn
y=xde
error pattern

(: p




Review: Block Decoding

® In this chapter, we assume the use of minimum distance
decoder.

&(y) = argmin d(x.y)

e Recall
The MAP decoder is the optimal decoder.

When the codewords are equally-likely, the ML decoder the same
as the MAP decoder; hence it is also optimal.

When the crossover probability of the BSC p is < 0.5,
ML decoder is the same as the minimum distance decoder.

* Also, in this chapter, we will focus
less on probabilistic analysis,

but more on explicit codes.
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Vector Notation /z;\ e \

0, 0: the zero vector

—_—

V : column vector ' (the all-zero vector)

—_

\V / I 1 1 the one vector
n

the H e vect
l‘: TOW Vect()r (T ITZ; LT ) | ( all-one vec or)

- e -

Subscripts represent element indices inside individual
vectors.

V; and 77 refer to the i elements inside the vectors V and T,
respectively.

When we have a list of vectors, we use superscripts in

parentheses as indices of vectors.

1 2 M
T’\( ) , TI\( ) ) e TI\( ) is a list of M column vectors

rD (@ pOn;
_\(l)

is a list of M row vectors

and I‘( ) refer to the it" vectors in the correspondlng lists.

e e e e o e o e e e = -




Linear Block Codes
® Definition: Cis a (binary) linear (block) code if and

Equivalently, this is the same as requiring that
if)_((l) and )_((2) € C, then )_((1)@)_((2) e C.

Note that any ey linear code C must contain 0.

¢ Ex.The code that we considered in is
C = {00000,01000,10001,11111}

Is it a linear code?




Linear Block Codes: Motivation (1)
® Why linear block codes are popular?

® Recall: General block encoding

Characterized by its codebook.

o The table that lists all the 2 mapping from the k-bit info-block s
to the n-bit codeword x is called the codebook.

o The M info-blocks are denoted by sV, s ... s
The corresponding M codewords are denoted by x1), x(?) ... x(M),
respectively.

index 7 | info-block s codeword x
1 [sW=000...0 [x=

2 s? =000...1 | x? =

M g(w =111...1 g(ﬂ"f) =

Can be realized by combinational / combinatorial circuit.

If Tucky, can used K-map to simplity the circuit.




Linear Block Codes: Motivation (2)
® Why linear block codes are popular?

® Linear block encoding is the same as matrix multiplication.

See next slide.
The matrix replaces the table for the codebook.

The size of the matrix is only k X 1 bits.
Compare this against the table (codebook) of size 2% x (k + n) bits for

general block encoding.
® Linearity = easier implementation and analysis

® Performance of the class of linear block codes is similar to

performance of the general class of block codes.

Can limit our study to the subclass of linear block codes

@ without sacrificing system performance.




Linear Block Codes: Generator Matrix

g
F I de, there i ' = @
Oor any linear code, there 1s a matrix G = 5
g (k)
called the generator matrix ] ~ “exn

such that, for any codeword X, there is a message vector b

which produces X by k
"x =bG|= Ebjgm
Note: \j=1Y J

(1) Any codeword can be expressed as a linear combination of the

Note also that, given a matrix G, the (block)

code that is constructed by (2) is always linear.

rows of G
(2) € = {bG:b € {0,1}*} [

)




Linear Block Codes: Examples

* Repetition code:X=[b b - b]
G=[1 1 - 1]
)_(:hG:bG:[b b - b]
Pk _1
n n
vk
* Single-parity-check code: X = [ b ;Z bj ]
j=1
G = [lkxk;lT] par;ty bit
k k
R=—=—
n k+1




Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

Triple-repetition code Parity—check code




Evén Parity vs. Odd Parity

® Parity bit checking is used occasionally for transmitting ASCII
characters, which have 7 bits, leaving the 8th bit as a parity
bit.

® Two options:

Even Parity: Added bit ensures an even number of 1s in each
codeword.
A: 10000010

Odd Parity: Added bit ensures an odd number of 1s in each

codeword.
A: 10000011




Even Parity vs. Odd Parity

* Even parity and odd parity are properties of a codeword (a

vector), not a bit.

* Note:The generator matrix G = [I;x; 1"] previously

considered produces even parity codeword

k
X = b }ij
! J=1

® Q: Consider a code that uses odd parity. Is it linear?




Error Control using Parity Bit

* If an odd number of bits (including the parity bit) are
transmitted incorrectly, the parity bit will be incorrect, thus

indicating that a parity error occurred in the transmission.

o Ex.
Suppose we use even parity.

Consider the codeword X = 10000010

® Suitable for detecting errors; cannot correct any errors




Error Detection

e Two types of error control:
error detection
error correction

¢ Error detection: the determination of whether errors are

present in a received word.

® An error pattern is undetectable if and only if it causes the
received word to be a valid codeword other than that which
was transmitted.

Ex: In single-parity-check code, error will be undetectable

when the number of bits in error is even.




Error Correction

* In FEC (forward error correction) system, when the
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid

codewords was transmitted.

® [tis possible for a detectable error pattern to cause the
decoder to select a codeword other than that which was
actually transmitted. The decoder is then said to have

committed a decoding error.
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arranging k message bits in
a square array
whose rows and columns

are checked by 2Vk parity
bits.

A transmission error in one
message bit causes a row
and column parity failure
with the error at the
Intersection, so single
errors can be corrected.

Square array for error correction by
parity checking.
® The codeword is formed by

h — [bl' bZ' ce) b9]

™

by | by | b3 | Py
by | bs | be | P2
b; | bg | bg 2_93_
| P4 | Ps | Pe |
§ — [bl; b2' ceey b9i pl' pZJ Ry p6]

[Carlson & Crilly, p 594] /




Weight and Distance

e The Weight of a vector is the number of nonzero coordinates in
the vector.

The Weight of a vector X is commonly written as W(X).
Ex. w(010111) =

For BSC with cross-over probability p < 0.5, error pattern with
smaller weight (less #1s) are more likely to occur.

® The Hamming distance between two n-bit blocks is the
number of coordinates in which the two blocks differ.

Ex.d(010111,011011) =

Note:

The Hamming distance between any two vectors equals the Weight of their
sum.

The Hamming distance between the transmitted codeword X and the
received vector Y is the same as the weight of the corresponding error

pattern g .




Review: Minimum Distance (d
of a block code is the

The minimum distance (d

min)

minimum Hamming distance between all pairs of distinct

codewords.

e Ex. Problem 5 of HW3:

Problem 5. A channel encoder map blocks of two bits to five-bit (channel) codewords. The
four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over

the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d,,;, among the codewords?

Fmin = 1
10001 1111
oooo0o 2 S
04900 > 4
& 1000 1 3
11111

e Ex. Repetition code:
(- i




dm

.- two important facts

For any linear block code, the minimum distance (d_; )

can be found from minimum Weight of its nonzero

codewords.

So, instead of checking (zk) pairs,
snnply check the Welght of the 2¥ codewords.

(o

-

A code with minimum distance d . can

detect all error patterns of Weight w<d . -1.

min

d 1
correct all error patterns of Welght w < {&‘




d... IS an important quantity

® To be able to detect all w-bit errors, we need dp,;, = w + 1.

With such a code there is no way that w errors can change a valid
codeword into another valid codeword.

When the receiver observes an illegal codeword, it can tell that a
transmission error has occurred.

® To be able to correct all w-bit errors, we need di, = 2w + 1.

This way, the legal codewords are so far apart that even with w
Changes the original codeword is still closer than any other
codeword.




Example

Consider the code

C € {0000000000, 0000011111, 1111100000, and 1111111111}

® [s it a linear code?

° dmin —
® It can detect (at most) errors.
® It can correct (at most) errors.
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Hamming codes

® One of the earliest codes studied in coding theory.

® Named after Richard W. Hamming
The IEEE Richard W. Hamming Medal, named after him, is an

award given annually by Institute of Electrical and Electronics
Englneers (IEEE), for ' exceptlonal contributions to mformatlon

sciences, systems and technology®.
Sponsored by Qualcomm, Inc
Some Recipients:
* 1988 - Richard W. Hamming
e 1997 -Thomas M. Cover
e 1999 - David A. Huffman
* 2011 - Toby Berger

® The simplest of a class of (algebralc) error correcting codes that
can correct one error in a block of bits




Hamming codes: Ex. 1

This is an example of Hamming (7,4) code

In the video, the codeword is

constructed from the data by

x=|[p; dy p; d; p3 dj
where

pr=d,Dd,Dd,
p, =d D ds; Ddy
p3=d2@d3@d4

e The message bits are also referred to as the data bits or information bits.

® The non-message bits are also referred to as parity check bits, checksum

@ bits, parity bits, or check bits.




Generator matrix: a revisit

o q:act: The 1s and Os in the jth column of G tells which

@it in the codeword.

positions of the data bits are combined (@) to produce the jth

~

J

® For the Hamming code in the previous slide,

§=[|01 d p, d, p; d; d4]

pp=d, Dd, Dd,
p, =d, Dds;Dd, =|d d d d
ps =d, Dd; Dd, [1 i : 4]

—t OO et
o O O =




Generator matrix: a revisit

k .
® From X = bG = 2 bjg(f) , we see that the j element of the
j=1

codeword x of a linear code is constructed from a linear
combination of the bits in the message:

Kk
Xj = 2 bigij -
i=1

® The elements in the jth column of the generator matrix become
the Weights for the combination.

Because we are working in GF(2), g;; has only two values: 0 or 1.
When itis 1, we use b; in the sum.

When it is 0, we don’t use b; in the sum.
* Conclusion: For the j'" column, the i*" element is determined from

whether the it message bit is used in the sum that produces the jth
element of the codeword x.

/




Codebook of a linear block code

d X e Now that we have a
O 00 00 0O0O0O0O0CO sufficiently—large example
O 0 0o 111 01 O 1 0 1 [ debook let’
001 0/001 0110 ol a codebook, let's
0 01 111 0 0 0 0 1 1 consider some important
0 100100 1 1 00 types of problems.
O 1 0 110 O 1 1 0 0 1
0 1.1 01 0 1 1 0 1 0 ® Given a codebook, how can
0 11140 0 0 1 1 1 1 we check that the code is
1 0 0 Ooj1 1.1 0 O O O '
100 1/0 1 00 1 0 1 linear?
1 01 Oj1 1 0 O 1 1 O ° . d k h
T 01 1l0 1100 1 1 leena codebook, OVV. can
110 0l0 1111 0 o we find the correspondmg
110 11 10 1 0 0 1 generator matrix?
1 1.1 0,0 1 0 1 O 1 O
1 11 111 1 1 1 1 1 1




Codebook of a linear block code

d X Note that

0o 00 olo o o o0 o0 0 O e FEach bit of the codeword for

000 1/!17 0 1 0 1 0 1 linear code is either

0o 01 olo o 1 o 1 1 0 the same as one of the message

001 1/1 0000 1 1 bltSthb.()fh

ere, the second D1t (x,) ol the

01001 001100 codeword is the same azs the first

0 1.0 1,0 0 1 1 0 O 1 bit (b,) of the message

O 1.1 0|1 01 1 0 1 O the sum of some bits from the

o 1.1 110 0 O0 1 1 1 1 message

1 0 0 O1l1 1.1 0 O O O Here, the first bit (x,) of the
codeword is the sum of the first,

100170100101 second and fourth bits of the

1 01 0j1 1 0 0 1 1 O message.

1011401 1 00 11 ® So, each column in the codebook

11 0 0j0 1 1 1 1 0 O should also satisfy the above

11 0 1|1 1 0 1 0 0 1 structure (relationship).

1 11 0,0 1 0 1 O 1 O

1 11 171 1 1 1 1 1 1




;-
“Reading” the structure from the

codebook.
d X ® One can “read” the

0 00 0/0O0OO0O0O0TU 0O structure (relationship)
dyJ0_0 0 1](1) 0 01 0 1 from the codebook.
d;[0 0 1 0f0)o(1) o0 1 1 0 .

0 01 1§y1f0/0/0 0 1 1 ,mex:z d.a..
d;[01 0 ofajof01 1 0 0 J o, i

010 140/0/1/1 0 0 1 when we look at the

0 1 1 0f1lo0/1[1 0 1 0 block with

0 1 1 1/oflolol1 1 1 1 MEsSage OC,V,Vlt.a
d;[1 0 0 0 1{1 o o 0 o single 1 at position ,

1 0 0 1/0 1 0o 0 1 0 1 then

1 01 0|1 1 0 0 1 1 0 .

101 1lo 1 1 0 0 1 1 thevalueof.lenthe

1 100/0 111100 corresponding

1 1 0 1|1 1 0| 1 0 0 1 codeword gives g;;

1 11 0/0 1 0 10 1 0 _

111 1|1 1T 11T 1 11 X1 =dy D dy D dy

@ X3 =d; Dd; Dd,




™

“Reading” the generator matrix from

the codebook.

;-

P
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Checking linearity of a code

d * Another technique for checking
— linearity of a code when the
codebook is provided

is to look at each column of the
codeword part.

)
—J

® Write down the equation by reading
the structure from appropriate row
discussed earlier.

== (O o

For example, here, we read x; =
d, @ d, D d,.
Then, we add the corresponding
columns of the message part and
check whether the sum is the same
as the corresponding codeword
column.

® So, we need to check n summations.
Direct checking that we discussed

earlier consider (M N )

2

el el e k== N el ol el o]l
_ o= R R OO0 OO0 R Rk OO o
_ R OO R R O0OR R OOR RO O
_ O = O R O R IOFR O RO IOmO
r—\or—\oor—\ogor—\o[:

N e el = =N e e N ol NN
_, OO R R OORORROORRO
R R R R OO0 OO R R R R OOOO|IV
_-_ O O R O RR RO RFROORFEROREFEO
—_ R, OO R PP OORROORROO
P OFRORORORORORORO

@

summations.




Checking linearity of a code

d X °
0 00 0|l0OOOUO0O0O0O
d, [0 0 0 1|@T) 0 1 0 1 0 1[8¥e
d:f0 0 1 0j0) 0o 1 0 1 1 ofg?
001 1/1 000 0 1 1|
[0 1 0 0l@o o 11 0 ofg?
0 10 1/0 01 10 0 1
01 10/1 011010
011 1lo0 0011 1 1
[T 000|110 0 0 ofg?
1 00 1/0 1 0 0 1 0 1
101 0[1 100110
101 1/0 1100 1 1
1 100[/1 111100
110 1/1 10100 1
1 110/0101010
111 1/1 111111

Here is an example of non-
linear code.

Again, we read

x;=d, Dd, Dd,.

We add the message columns

corresponding to d, d, dy4,
We see that the first bit of the
13t codeword does not

conform with the structure
above.

The corresponding message 1S
1100.

We see that g(l) and g(z) are
codewords but gt @ g(®) =
0111100 is not one of the

codewords.




Implementation

¢ Linear block codes are typically implemented with modulo-2

adders tied to the appropriate stages of a shift register.

P1

P2 | P3 l

,/—)_(Z[P1 di pp dp p3 dj
where

pr=d; Dd, Dd,

p, =d; Dd; Dd,
ps =d, D d; D d,

dy]




/

Back to

Hamming codes: Ex. 1

X1 Xo X3 X4 Xg Xg X7
Xx=[p1 dy p, d; p3 d3 d4

Structure in the codeword:

pr=d, Dd, Ddy pr®dd, bd, Dd,=0
p,=d, ®d; Dd, 4P p,Dd Dd;Ddy=0
p3 =d, Dd; Ddy psDd, Dd; Ddy,=0
1 0 O]
At the receiver, we check whether the received 11 0
vector y still satisties these conditions via computing 0 1 0
the syndrome vector:
s=[Y, Y. Vs Va Y5 Ve Vi1 O 1]=0?
X1 Xz X3 X4 X5 X¢ X7 |0 0 1
p1d1p2d2p3d3d4011
@ 11 1




Parity Check Matrix: Ex 1

* Intuitively, the parity check matrix H, as the name suggests, tells
which bits in the observed vector y are used to “check” for Validity of y.

® The number of rows is the same as the number of conditions to check
(which is the same as the number of parity check bits).

® For each row, a one indicates that the bits (including the bits in the parity
positions) are used in the validity check calculation.

Structure in the codeword:

Dd Dd, Bd, =0 1 1 01 O 0 1
P1 1 2 4 =

p, di Bd; Hd,=0 “ H=/0 1 1 0 0 1 1
ps Dd, Dds Ddy =0 000 1 1 1 1




Parity Check Matrix: Ex 1

Relationship between G and H.

1 0 0 1
1

1

0 0 O

1

0O 0 0 O
1

1

1

0

0

1

0 0

1




Parity Check Matrix

Key property:

GH' =0,

Proof:

* When there is no error (€ = 0), the syndrome vector

calculation should give 8 = 0.
* By definition,

s=yH" = (x® e)H" =xH" D eH" = bGH" D eH".
o Therefore, when € = 0, we have s = bGH" .

* To have S = 0 for any b , we must have GH' = 0.




Systematic Encoding

¢ Code constructed with distinct information bits and check

bits in each codeword are called systematic codes.

Message bits are “visible” in the codeword.

* Popular forms of G:

G =[Py [ ] }3=0600 5 B[Ry 1
:[X1 X Xk E)l l?zﬂ E)k_

[G = |:Ik ka(nk)ﬂgzh(} :[bl b, bk][lk PkX(n—k)]
:[bl b2 bk : Xk+1 Xk+2 Xn]




Parity check matrix

¢ For the generators matrices we discussed in the previous
slide, the corresponding parity check matrix can be

found easily:

[G:[ka(nk) O, | == H=[1,, | P ]}

Check: GH' :[P I]
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Hamming codes

Now, we will gives a general recipe for constructing Hamming

codes.

Parameters:

°* m =N — k = number of parity bits
en=2M-1€{3,7,15,31,63,127, ... }
ck=n-m=2"-m-1

It can be shown that, for Hamming codes,

°d . =3.

* Error correcting capability: t = 1




Construction of Hamming Codes

e Start with m.

I.  Parity check matrix H:
Construct a matrix whose columns consist of all nonzero binary
m—tuples.

The ordering of the columns is arbitrary.

However, next step is easy when the columns are arranged so

that H=[I, | P].
2.  Generator matrix G:
When H:[Im P],We have G:[—PT Ik]:[PT Ik]




Hamming codes: EX. 2
® Systematic (7,4) Hamming Codes

_PT
1 0 0lfo 1 1 1J
010i1011
|
00 141 1 01
01 1))1 0 0 0
1 0 1010 1 0 0
11oi0010
11 1/jo 0 01
P

® Columns are all possible 3-bit vectors

® We arrange the columns so that I is on
the left to make the code systematic.
(One can also put I; on the right.)

® Note that the size of the identity
matrices in G and H are not the same.




Minimum Distance Decoding

* At the decoder, suppose we want to use minimum distance
decoding, then

The decoder needs to have the list of all the possible codewords

so that it can compare their distances to the received vector y.

There are 2% codewords each having n bits.
Therefore, saving these takes 2% % 1 bits.

Also, we will need to perform the comparison 2* times.
* Alternatively, we can utilize the syndrome vector (which is
computed from the parity-check matrix).

The syndrome vector is computed from the parity—check matrix

H.
Therefore, saving H takes (n — k) X n bits.

(-,




Minimum Distance Decoding

® Observe that
d(xy) =w(x@y) = w(e)

® Therefore, minimizing the distance is the same as minimizing the weight of the
error pattern.

® New goal:
find the decoded error pattern € with the minimum weight
then, the decoded codeword is X = y @ e

* Once we know X we can directly extract the message part from the decoded
codeword if we are using systematic code.

* For example, consider - -

G =

Suppose X = 1011010, then we know that the decoded message is b = 1010.




Properties of Syndrome Vector

e From GHT = 0, we have
s =yH" = (x®e)H” = (bG®e)H" = eH”

* Thinking of H as a matrix with many columns inside,

h ] ]
H= f =y |v v,
L (T ]
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s =eH" = Z ejV;j
=1

® Therefore, S is a linear combination of the columns of H.
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Hamming Codes: Ex. 2
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Note that for an error pattern
with a single one in the ]'th
coordinate position, the
syndrome § = yH! is the
same as the jth column of H.

Error pattern e

Syndrome = eH'

(0,0,0,0,0,0,0) (0,0,0)
(0,0,0,0,0,0,1) (1,1,1)
(0,0,0,0,0,1,0) (1,1,0)
(0,0,0,0,1,0,0) (1,0,1)
(0,0,0,1,0,0,0) (0,1,1)
(0,0,1,0,0,0,0) (0,0,1)
(0,1,0,0,0,0,0) (0,1,0)
(1,0,0,0,0,0,0) (1,0,0)




Properties of Syndrome Vector

® We will assume that the columns of H are nonzero and distinct.
This is automatically satisfied for Hamming codes constructed from our recipe.

® Case 1:Whene = 0, wehave s = 0.
[When s = 0, we can conclude that € = 0 ]

There can also be € # 0 that givess = 0.
e For example, any nonzero € € C, will also gives = 0.

* However, they have larger weight than € = 0.
[The decoded codeword is the same as the received vector. ]
O’ i — j’ . . . .th ., .
® Case 2: When, e; = 1, i%j (a pattern with a single one in the j™ position)
) )

we have § = V; = the j column of H.

R 0, 1=},
When S = the j" column of H, we can conclude that ; = 1, i#]

There can also be other € that give S = V;. However, their weights
* can not be 0 (because, if so, we would have § = 0 but the columns of H are nonzero)

* nor 1 (because the columns of H are distinct).
[We flip the jth bit of the received vector to get the decoded codeword. ]




(-,

Decoding Algorithm

* Assumption: the columns of H are nonzero and distinct.

P
* Compute the syndrome § = yHT for the received vector.

° Case 1:If s =0,setX =y.

* Case2:1f s # 0,

determine the position j of the column of H that is the same as
P ]
(the transposition) of the syndrome,

N set X = y but with the jth bit complemented.

~

® For Hamming codes, because the columns are constructed
from all possible non-zero m-tuples, the syndrome vectors
must fall into one of the two cases considered.

® For general linear block codes, the two cases above may not
COVeT every cases.




Hamming Codes: Ex. 1

® Consider the Hamming code with
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® Suppose we observe y = 0 1 0 1 1 1 1]atthe

receiver. Find the decoded codeword and the decoded

message.




[To be explored in the HW]

Hamming Codes: The original method

* Encoding
The bit positions that are powers of 2 (1, 2,4, 8, 16, etc.) are check bits.

The rest (3, 5,6, 7,9, etc.) are filled up with the k data bits.

Each check bit forces the parity of some collection of bits, including itself, to
be even (or odd).

To see which check bits the data bit in position i contributes to, rewrite i as a sum of
powers of 2. A bit is checked by just those check bits occurring in its expansion

° Decoding

When a codeword arrives, the receiver initializes a counter to zero. It then
examines each check bit at positioni (i =1, 2,4, 8, ...) to see if it has the
correct parity.

If not, the receiver adds i to the counter. If the counter is zero after all the
check bits have been examined (i.e., if they were all correct), the codeword
is accepted as valid. If the counter is nonzero, it contains the position of the
incorrect bit.




Interleaving

® Conventional error-control methods such as parity checking are
designed for errors that are isolated or statisticaiiy independent

cvents.

e Some errors occur in bursts that span several successive bits.

Errors tend to group together in bursts. Thus, errors are no longer
independent

Examples
impulse noise produced by lightning and switching transients
fading or in wireless systems
channel with memory
® Such multiple errors wreak havoc on the performance of
conventional codes and must be combated by special techniques.

® One solution is to spread out the transmitted codewords.

® We consider a type of interleaving called block interleaving.




Interleaving: Example

Consider a sequence of m blocks of coded data:

(1) (1 . (1) (2) (2) . (2) &), &) (f)
(g o) (22 e ) o (5 i)
1 ® Arrange these blocks as rows of a table.
(1) (1) (1) * Normally, we get the bit sequence simply by
e X reading the table by rows.
x£2) xéz) ngz) * With interleaving (by an interleaver), transmission
: : § . is accomplished by reading out of this table by
% @ % columns.
X1 X2 X ® Here, ¢ blocks each of length n are interleaved to
l form a sequence of length £n.

(xDx® w0 xO) (2P v x§0) o (2P 1)

The received symbols must be deinterleaved (by a deinterleaver) prior to decoding,




Interleaving: Advantage

® (Consider the case of a system that can only correct single errors.

® If an error burst happens to the original bit sequence, the system
would be overwhelmed and unable to correct the problem.

original bitsequence. (x{DxD -+ 1) (ATHD 2 - (xO0 x0)

interleaved transmission (xg)xiz) xg))) (xél)xgz) xg)) (xr(ll)xr(lz) x,gf))

® However, in the interleaved transmission,
successive bits which come from dIfferent original blocks have been
Corrupted

when received, the bit sequence is reordered to its original form and
then the FEC can correct the faulty bits

Therefore, single error-correction system is able to fix several errors.




Interleaving: Advantage

* If a burst of errors affects at most € consecutive bits,
then each original block will have at most one error.

e If a burst of errors affects at most rf consecutive bits
(assume r < n),
then each original block will have at most 7 errors.

® Assume that there are no other errors in the transmitted
stream of €n bits.

A single error-correcting code can be used to correct a single
burst spanning upto L symbols.

A double error-correcting code can be used to correct a single
burst spanning upto 2P symbols.
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